
.—1 >-
vO a.

1 3 ^
M n

. i
Q l ^
rr U-,
':-•

t—1

n 1 H
in to
U) :i|

ESD-TDR-64-161 SR-122

PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-161

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI), BUILDING 1211

JANUARY 1965

J. H. Burrows

COPY NR. OF COPIES

ESTI PROCESSED

• DDC TAB • PROJ OFFICER

D ACCESSION MASTER FILE

•
DATE

Prepared for

DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

ESTI CONTROL NR

CT NR I

AL 44484

CYS

Projects 416 and 502

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-2390

AObUiO'^K

Copies available at Office of Technical Services,
Department of Commerce.

Qualified requesters may obtain copies from DDC.
Orders will be expedited If placed through the librarian
or other person designated to request documents
from DDC.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or In
any way supplied the said drawings, specifications,
or other data is not to be regarded by Implication
or otherwise, as In any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented Invention that may in any way be related
thereto.4

Do not return this copy. Retain or destroy.

ESD-TDR-64-161 SR-122

PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-161

JANUARY 1965

J. H. Burrows

Prepared for

DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Projects 416 and 502

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-2390

PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS

ABSTRACT

This report describes the program design and accompanying tools
required to fabricate an initial operational program which is subject
to change through use and as a result of changes in the environment
of the system. Major design decisions are shown to have little
relation to the programming language that is chosen for the statement
of the logical data transformation to be implemented by the final
program. The actual coding required for performing the logical
transformations turns out to be a relatively small part of the overall
design job. The choice of the programming language to be used is
just an initial decision in the process of selecting adequate tools for
assisting the production and modification of real-time programs.

REVIEW AND APPROVAL

This technical documentary report has been reviewed and is approved.

^JjJSEYMOUR JEFFERY
Major, USAF
Chief, Computer Division
Directorate of Computers
Deputy for Engineering & Technology

in

CONTENTS

Section Page

I INTRODUCTION 1

II TASK AREAS 3

III IMPLICATIONS OF PROGRAM-DESIGN DECISION 6

IV CONSTRUCTION TOOLS USED FOR ON-LINE SYSTEMS 15

V CONCLUSIONS 22

ILLUSTRATIONS

Figure Page

1 Tasks or Subprograms 3

2 Internally Associated Items 5

3 Subprogram Tables 7

4 Estimate of File Size 7

5 Instruction Requirements 8

6 Word Requirements 8

7 Process Sequence 9

8 Dynamic Memory Allocation 12

9 First Stage of Translation—Compiling 17

10 Second Stage of Translation—Loading 18

11 Simulation-Data Production 19

12 Debug-Run Flow 20

13 Recorded-Data Translation 20

14 Assembly Testing 21

PROGRAM STRUCTURE FOR MILITARY REAL-TIME SYSTEMS

SECTION I

INTRODUCTION

At the present time a great deal of attention is being devoted to program-

ming languages and their relative effectiveness in performing the logical

transformations required in data-processing tasks. In fact, so much emphasis

is being given to such languages that there is a danger that program design

will be construed as being merely a matter of choosing and applying the

appropriate programming language for each job. Actually, there is much more

involved.

One of the most important problems in program design is that of logistics.

The data must be made available to the machine at the right time and in the

right sequence. It is a fact that, for a large problem, the logistics involved

in the machine processing of data becomes much greater and much more

critical than the logical problem of transformation of data. There are many

mathematicians who can tell you in what sequence to add certain numbers

together and what logical processes to carry out to get a certain answer. But

making a computer accomplish a desired data manipulation is much more

complicated. There are, for example, the problems of getting the raw data

into the machine, of storing partially finished calculations, and of making the

machine perform the required data transformations. Furthermore, in the

operation of a data-processing job, the machine's memory gets loaded with

programs, and, when you have a large, complex job, these programs won't

all fit in the storage space available. This is one of the most serious problems

encountered in machine problem-solving.

It is characteristic of all the significant problems associated with the

military that the whole program never fits the machine. Therefore, we must

somehow break up the job into individual tasks. When we have done this, we

must determine what data these tasks require and what data they produce,

structure the data in some way compatible with them, determine the sequence

of running the tasks, and allocate storage. Then we have not only the problem

of allocating the main computer storage, but also the problems of storing the

intermediate results, the data not yet required, and the subprograms not in

use, and of scheduling the flow for the total processing.

SECTION II

TASK AREAS

To illustrate this point, a hypothetical programming-design job is broken

into six tasks areas, labelled A-F in Fig. 1. Let us, for the moment, skip the

problem of how to divide an overall processing task into subprograms. For one

thing, the rationale for such a split will not be entirely clear until we have seen

the effects that different decisions at this point have upon later decisions.

Furthermore, each breakdown depends upon the content of the total processing

required, which, for this report, is discussed in abstract terms only. The

point here is that, no matter how we divide the overall processing job into sub-

programs, such a breakdown is necessarily a vital step in developing a design

that will enable us to proceed with the programming of the individual tasks.

A B c D E F

1 / >/

2 y y
3 • y
4 y y

NFORMATION 5/ y y
ITEMS 6 y

7 y y
8 y y
9 • y
10 y y
II y y
12/ y y

Fig. 1 Tasks or Subprograms

Let us now consider the data elements that are to be processed in our

example. In addition to knowing what data elements are involved in the total

job, it is essential to know which are needed and/or produced by each task area.

The matrix of information items for the present example is shown in Fig. 1.

The information items are grouped on the basis of natural association by

the point of view outside the computer. For example, Items 1-4 might be

information about airfields. Therefore, although these items may be stored in

separate parts of the computer memory, they are logically associated from the

outside point of view. In their operation, the individual tasks either require or

produce the information items checked in Fig. 1. Therefore, while each sub-

program is running, the data associated with it must be in the main computer

store, for if information is needed, it must be available, and if it is to be

produced, there must be local space saved for it. The matrix shown in Fig. 1

represents a relatively simple program. In actual programs the picture is

often much bigger. In the SAGE program breakdown, for example, there were

some 70 task areas and over 2, 000 data elements.

The information in the matrix has several interesting features. For

instance, we can see that Information Items 1 and 3 are needed by Subprograms

A and B but not by C, D, E, or F. So, internally, Items 1 and 3 are associated.

In other words, from an internal point of view, all of the information items

required or produced by a task area are associated. We might want to group

these internally associated items of information and treat them as a unit. That

is, we might want to arrange it so that, whenever we move Item 1 into or out of

the main computer storage, we shall also move in or out Item 3. For example,

we might wish to group the internally associated items as shown in Fig. 2.

Here we see Items 1 and 3 grouped together as Table I, Items 2 and 4 as

Table II, Items 5 and 6 as Table III, Items 8 and 9 as Table IV, Item 10 as

Table V, and Items 11 and 12 as Table VI.

A B c D E F

i y y
2 y y
3/ y
4 y y

INFORMATION 5/ y y
ITEMS 6 y

7 y y
s y y
9 y y
10 y y
II y y
12/ • y

TABLES

I» 1,3
0 = 2,4
m-5,6,7
nr»8,9
2-= 10
SI' II, 12

Fig. 2 Internally Associated Items

SECTION III

IMPLICATIONS OF PROGRAM-DESIGN DECISION

Let us consider the implications of this kind of program-design decision.

In place of the items of information, we now have tables or files, as shown in

Fig. 3. We need Tables I, III and IV for A, Tables I, IV, and VI for B, etc.

Now we have some insight into the table or file structure and the program

structure for the total processing job, and we can make some estimate of file

sizes, as shown in Fig. 4, if the user provides, for example, data giving the

number of airfields he wishes to talk about. Knowing what these sizes are, we

can calculate that when Subprogram A runs, the data storage area alone that is

required is 4, 000 plus 1, 000 plus 2, 000, or a total of 7, 000 registers of main

memory. Now, if we know how many instructions are required for each task

area as given in Fig. 5, we can get a better idea of the total memory require-

ment for each subprogram. We can estimate fairly accurately what the total

storage requirement for each task will be.

We can see in Fig. 6 that the subprogram requiring the greatest number of

words is Task D, which requires 11, 000 words. Now suppose that the available

machine has only 10, 000 registers of memory. Obviously, more design work

must be done. It might be appropriate to keep the program the same size and

subdivide the data, and plan on bringing the data past this program piece by

piece. Or, we might split Subprogram D into two equal parts, D, and D'. Or,

some of the small jobs of Task D might be moved out of that task and into another,

such as Task E, which requires only 6, 000 memory registers. Or, we could

change the table sizes by splitting them up into pieces, half size or even smaller.

There are many possible solutions to the problem. It is true of all of them that,

in addition to changing the subprogram in question, they will usually affect other

task areas as well.
6

A B

SUBPROGRAM!

C D E F

I y •
IT y y y

TABLES in y y y y y
OR

FILES 12 y J y y
TT y y
51 y y y

Fig. 3 Subprogram Tables

TABLES
OR

FILES

SUBPROGRAMS

A B C D E F

SIZE
OF

DATA

I y y 4000

n y y y 2000

IE y y y y y 1000

is: y y y y 2000

3T y y 4000
iU. y y y 1000

Fig. 4 Estimate of File Sizes

NUMB :R OF I NSTRUCTIONS

2000 1500 1500 2000 2000 1500

A B

SUBPROGRAMS

C D E F

SIZE
OF

DATA

I y y 4000

IT y y y 2000

TABLES SI y y y • y 1000
OR

FILES W y y y y 2000

I y y 4000

21 y y y 1000

Fig. 5 Instruction Requirements

NUMBER OF 1 NSTRUC JTIONS

2000 1500 1500 | 2000 2000 1500

A

SUBPROGRAMS

BCD E F

SIZE
OF

DATA

I y y 4000

I y y y 2000

TABLES nr y y y y y 1000
OR

FILES m y y y y 2000

X y y 4000

~SL y y y 1000

9K 8.5 K 7.5 K IIK 6K 6.5K

WORDS

Fig. 6 Word Requirements

To simplify, let us suppose that the machine available has 12,000 regis-

ters in main memory. Thus far there is no design conflict among subprograms.

Now, in order to proceed further in the overall design, we must consider the

sequencing of the individual tasks. Suppose that Task A is an input program

which has to operate before anything else, and that Task F is an output program

which must be the last subprogram processed. For the other tasks there are

only the following types of constraints: Some tasks in B must precede D —

there is nothing in D that must precede B. If it had turned out that there were

some things to be done in Task D that were logically required before B, and

some to be done in D that were logically required after B, there would have

been a problem, and the task breakdown would have had to be redone. In that

case, we might split D into two parts - one part that precedes B and one that

follows B. Suppose that such is not the case, however, and that the precedence

relations shown at the top of Fig. 7 are the logical constraints. We see that the

A PRECEDES ALL B —^ D

B PRECEDES D A —•» D —»• F

C PRECEDES D 8 E E

ALL PRECEDE F

POSSIBLE CONTROL SEQUENCES

A B C D E F

A B C E D F

A C B D E F

A C B E D F

A C E B D F

Fig. 7 Process Sequence

following rules of order prevail: A must precede all other tasks, F follows all

others, B precedes D, and C precedes D and E. Given these four rules of order,

we can derive five possible control sequences, which are shown in the lower half

of Fig. 7. These five sequences may not all be equivalent; they may have differ-

ent running times on the computer, or one of these sequences may be simpler

and better for checkout, or one may be better for extension in the future. These

differences have to be considered by the program designer.

Suppose that we just want to investigate the first sequence - A, B, C, D,

E, F. Once we know the operating sequence of the task areas, the data require-

ments, and size of each task area, it is appropriate to do a preliminary storage,

or resource, allocation. We shall consider only one resource, namely main

memory, although such things as secondary storage and I/O channels must also

be allocated and scheduled for use.

Main memory allocations can be viewed as a two-dimensional plot, with

time as one axis and memory cells as the other axis. For each subprogram

time slot, an allocation of main memory to its program and data must be chosen.

For the example that we have been following, we already know that we can do

this since there are 12K memory cells available and there is no subprogram that

requires, at least at this stage of design, more than UK. Some of the guides

for storage allocation in our example will be:

(1) Internally associated data will be kept as a unit (called
contiguous addressing) when in the main store.

(2) An attempt will be made to move data as little as possible
consistent with use and storage limitations.

(3) If a data table is used by several programs, an attempt will
be made to have it occupy the same addressed area of memory
for all of its uses.

10

(4) Where possible, data transfers will be overlapped with
program operations; i. e. , transfers preparing for future
program operation will take place during the operation of
any program.

These rules are only for guiding the solution of the simple problem

presented by the example discussed here. Different rules are followed for

different systems, depending upon the complexity of the job, the time require-

ments, and the translation and control machinery available for stating or

executing the design. In any case, the ultimate goal of main-memory allocation

is to minimize the amount of nonuseful setup time for each operating program

while keeping the overhead on-line structure both small and short in operating

time. In order to do this, the allocation must be easy to modify and must allow

debugging to proceed, i. e. , additional tools may be needed for each level of

sophistication in a storage allocation. A truly dynamic allocation will require

different translators and larger amounts of overhead machinery on-line,

especially for debugging, operational testing, monitoring, and recovery.

To return to the sample program, one of the many possible memory

layouts is given in Fig. 8. The size of the overlay problem in this example is

small. The total system is estimated (see Fig. 6) to require some 24. 5K

registers, and the main memory available is 12K, resulting in an overlay factor

of only 2:1. The original SAGE program, on the other hand, had an overlay

factor of about 15:1 with a main memory of 8K words.

Figure 8 shows that there are several tables that do not move during

program operation. In an operational military system, portions of the data may

sometimes have to be saved after program operation in order to allow recovery

should normal operation become interrupted, e. g. , because of power failure,

program error, machine error, or scheduled stoppage. Thus, for those con-

siderations this design may be inadequate. In the design presented here,

11

I2K

I IK

IOK

9K

8K
7K

6K
5K
4K
3K

2K
IK

A B C D E F

cm (ID n H H (ID

m (Ttt) m m HI EL

n DT IT IX (nz) (H)

m) •n •zr (YD •n (YD .

i I FLUX I (2) IT

A D

->

B C E " .

> NEED NEVER MOVE

SWAP WITH SECONDARY
STORE

BRING IN BEFORE
OPERATION

TIME

Fig. 8 Dynamic Memory Allocation

however, it is assumed that it is not necessary to save a program after its

operation. It is assumed that programs create their cycle-to-cycle memory in

isolable tables of the system and thus have no persistent internal memory.

Because of this characteristic, normal initialization procedures may be im-

bedded in the steady state of the code and therefore are not required at the start

of each operation.

Having settled on a storage allocation, we must next derive an I/O schedule

that will accomplish the program transfers required for creating the appropriate

environment for each program unit. For the example given here, this involves

transfer immediately prior to operation, and the alternate saving and restoration

of Tables I and V in the appropriate storage area. In more realistic systems,

such control of I/O and the sequencing operation is done by a central executive

that may have many more duties than that of program-environment control.

12

It is at this point that the program designer can attempt to estimate the

running time of a cycle of the operational program for the particular machine

configuration he is concerned with. However, even at this point in program

design, obtaining accurate size estimates of the subprograms involved is a

major problem, and estimating the running time of subprograms whose most

frequently operated instruction next to a load accumulator is a conditional branch,

is extremely difficult. Therefore, it is evident that final design decisions must

be delayed until later in the fabrication cycle. Tools, procedures, and early

design decisions giving the gross structure of the program must be made with

an appreciation of this essential fact.

The kind of general program design that has been described here, and its

accompanying tools, are required not only because of the needs inherent in the

fabrication of the first operational program, but also because of the inescapable

fact that the specifics of the operational system and thus its program will demand

changes as it is used and as changes take place in the operational environment.

By now all programmers, whether they are working in the military, commer-

cial, or scientific disciplines, or even for themselves, have become aware of

the results of pursuing thoughts along the line of "Wouldn't it be nice if.... "

Changes that seem simple from the point of view of external logic can be

catastrophic in relation to the internal structure of the program, just because of

the effect on the design decisions that we have briefly reviewed. Changes

frequently affect many of the subprogram areas.

Therefore, those about to embark on a program design for a large on-line

system should heed the following warning: Do not attempt such an enterprise

with fewer automated aids for construction, checkout, and maintenance than are

taken as a matter of course by the programmer of a small system. Add, as a

corollary to this warning, that large real-time programs require new tools in

13

order to handle the production task adequately. This requirement is due partly

to the problems of size and partly to the conflicting philosophies that exist in

regard to storage allocation between the standard operating system and the

translator of the programming language being used.

14

SECTION IV

CONSTRUCTION TOOLS USED FOR ON-LINE SYSTEMS

In order to isolate the produced code and thus the individual programmer

from certain design decisions, three innovations (time period 1955-56) were

made in the program production and the operational design of the SAGE System.

The first of these was the use, for the operational program, of a table-driven

central executive program to control the sequencing and I/O flow of the entire

program. The tables involved were called the sequence parameters and were

mainly a reflection of the changing but, from an on-line point of view, static

design decisions. Dynamic conditionality indicators could be set for the opera-

tion of specific subprograms. This arrangement made it possible to effect, only

when required, the transfer of appropriate operating environments for the

conditional subprograms. In addition, certain tables could, within limits, be

dynamic in size, and they were to be transferred and used with their actual size

taken into account. The second innovation was the accumulation in a central

bookkeeping table, referred to as the communication pool (COMPOOL), of

certain descriptive information about the data and the subprograms of the opera-

tional system. The third innovation was the insertion into the operational system

of a data- or storage-recording system that could, before or after any

subprogram, record any of the storage regions of the system. This program

was table-driven and set dynamically or before test operation. It could handle

any reasonable amount of recording. Care must be taken in the use of such a

recording system not to influence the very phenomena that are to be observed by

changing the time of the system beyond reasonable bounds. This is especially

important in operations using live inputs.

15

In order to code using the production tools available, the programmer of

SAGE had to know what functions his subprogram had to perform, the system

symbols of the data elements he required, whether or not the data was part of an

array, the indexing quantity used for entry into the array, the coding (i. e. , the

specific numeric values and their meaning) of the data elements, and the symbol

and entry parameters of any required system subroutines. He did not have to

know the location of his program in core or backing store, the packing of the

data elements, the association of the data elements into tables, or the location

of the data elements in core or backing store—in fact, it was the intent of the

program-production managers to withhold such information from the individual

programmers.

The transformation of the symbolic code into machine code was a two-stage

process. First, there was the compile or assembly stage, which produced, in

addition to such things as a relative and allocatable binary code and a local

symbol table, a list of subprogram requirements from a data-element and sub-

routine point of view. The data elements were listed according to whether they

were used only, modified only, or both used and modified. Such a list not only

helped verify programmers' statements of data and subroutine requirements but

was very useful in checking out the overall system program.

The first stage of translation is sketched in Fig. 9. At this point, the only

information needed from the COMPOOL is the relative location of each system

symbol in a master list or lists.

The second stage of translation is normally called loading. At this point

the programmer entered his output from the compiler, namely his symbol table

and his relative binary deck. (In addition, he could add corrections in the

program in terms of his local symbols and system symbols.) To perform this

operation, the loader used the COMPOOL to determine the operating core

16

COMPOOL

SYSTEM DATA AND
PROGRAM DESCRIPTION

SYSTEM SYMBOL
RELATIVE LOCATION

" PROGRAM REQUIREMENTS

PROGRAM
CODE

COMPILER
LOCAL SYMBOL TABLE

RELATIVE AND
ALLOCATABLE CODE

Fig. 9 First Stage of Translation—Compiling

address of the program, the location of the system subroutines called upon by

the program for each data element referred to, the table in which it was located,

the base address of that table in core, the mask needed to extract the data ele-

ment from storage or deposit it into storage, the shift required to position the

data element for testing or computation, and the shift required to restore the

data element to the appropriate position for storing. After transforming the

relative and allocatable code to absolute by the appropriate substitution of

derived numbers, the loader would store the code in the appropriate place in

backing store, leave it in its operating core position, or both. In addition,

required system subroutines could be loaded.

It is apparent that most of the resource-allocation decisions that were

found to be difficult to derive in the preliminary stages of program design are

not used in the code translation until the load, or read-in, phase. Therefore,

17

such decisions can be made and changed without affecting the source code or the

output of the first stage of translation, the compile phase. The loading process

is shown in Fig. 10.

COMPOOL

SYSTEM SYMBOL
RELATIVE LOCATION

SYSTEM DATA AND
PROGRAM DESCRIPTION

LOCAL SYMBOL TABLE

RELATIVE AND
ALLOCATABLE CODE

PROGRAM CHANGES

FINAL STAGE
TRANSLATOR
AND LOADER

LOADED
ABSOLUTE

" CODE

Fig. 10 Second Stage of Translation—Loading

During the initial phases of subprogram checkout it is not essential that

the system data and program description in the COMPOOL be complete or up to

date; it is necessary only that it be adequate for specific subprograms in check-

out. There is no logical reason why there cannot be a separate description for

each subprogram or why the one used cannot be inconsistent from an overall-

system point of view if it is adequate for each subprogram. However, it would

be difficult to check out a subprogram with the tools described so far, since

there is no way to introduce values into the data elements referred to by a

specific subprogram. Such a simple tool can easily be constructed. The

information needed exists in the COMPOOL, and, therefore, simulation data

can be produced for loading with the program, as illustrated in Fig. 11.

18

INITIAL

CONDITIONS

DESCRIPTION

COMPOOL

"

SIMULATED
DATA

GENERATOR

SIMULATED
DATA

TABLES

Fig. 11 Simulation-Data Producti on

In addition, it is necessary to produce a debug-control routine that accepts

control statements in local- and/or system-form and controls code execution and

recording during a checkout run. A flow diagram of the operation of such an

execution is given in Fig. 12. The flow shown is idealized and does not represent

any specific tool used in the production of SAGE, although it does characterize

the effect of several tools used. Making the output of such a run available to the

programmer would require a translator to change selected aspects of the re-

corded data into data-element values, local symbols, or system symbols for

output to a printer. Such a phase is sketched in Fig. 13.

Such a debugging tool allows detailed checking of each subprogram. For

system checking, or "assembly testing, " as it is called in SAGE terms, new but

similar procedures were used. In system tests, provision must be made for

continuous or intermittent entry of exogenous data. Usually these data are

L9

SIMULATED
DATA

TABLES

RELATIVE AND
ALLOCATABLE

CODE

LOCAL
SYMBOL TABLE

DEBUG
CONTROL

STATEMENTS

J_

ABSOLUTE
DATA AND

CODE

LOCAL
SYMBOL TABLE

COMPOOL DEBUG
TRANSLATOR

MODIFIED
ABSOLUTE

CODE AND DATA

DEBUG
EXECUTIVE

CONTROL
TABLES

DEBUG

RECORDING

DATA AND
CODE

LOCAL
SYMBOL TABLE

COM POOL

CONTROL
STATEMENTS

Fig. 12 Debug-Run Flow

DEBUG

RECORDING

TAPE

OUTPUT

CONTROL

STATEMENTS

DEBUG

TRANSLATOR

PRINTED

OUTPUT IN

SYMBOLIC FORM

Fig. 13 Recorded-Data Translation

20

simulated and entered from tape, although real data can be used for noncontrolled

but "realistic" inputs. This procedure is diagrammed in Fig. 14.

SIMULATED
DATA

PROGRAMS
LOADER

RECORDING
CONTROL

STATEMENTS

RECORDING
CONTROL

TRANSLATOR

LOADED
SYSTEM

INCLUDING
RECORDING
EXECUTIVE

RECORDING
CONTROL
TABLES

RECORDING

RECORDING
TAPE

DESCRIPTION

Fig. 14 Assembly Testing

2]

SECTION V

CONCLUSIONS

Some time has been spent here in reviewing the program-design process

and the tools required to defer some critical design decisions. This is only to

illustrate that the major design decisions have little relation to the programming

language chosen for the statement of the logical data transformations to be im-

plemented by the final program. The actual coding required for performing the

logical transformations turns out to be a relatively small part of the overall

design job. On the basis of his own experience, the author feels that the choice

of the programming language to be used is just an initial decision in the process

of selecting adequate tools for assisting the production and modification of

real-time programs.

22

Security Classification

DOCUMENT CONTROL DATA • R&D
(Security < Inaa i ii cat ion ot title, body ot abstract and indexing annotation muat bm antarmd ivhm tha ovarall raport ia c/a.. si/iedj

1 ORIGINATIN G ACT|V|TY (Corporate author;

The MITRE Corporation
Bedford, Massachusetts

2a REPORT SECURITY C LASSr CATION

Unclassified
2fc OROUP

3 REf)RT TITLE

Program Structure for Military Real-Time Systems

4 DESCRIPTIVE NOTES (Typa ol raport and Incluaiva data*)

NA
5 AUTPORfS) (Laat name tint nama, Initial)

Burrows, James H.

6 REPO RT DATE

 January L9£5

7* TOTAL NO. OF PAGE!

24
7k NO. OF REF1

0
8 » CONTRACT OR ORANT NO.

AF19 (628)-2390
b PROJEC T NO

416 and 502

li ORIOIN ATOR'i REPORT NUM»E«(S;

ESD-TDR-64-161

f 6 OTHER REPORT NOfS; (Any othar numbara mat may ba aaaltnad
**-'a raport.) tft/a

SR-122
10 A VAIL ABILITY /LIMITATION NOTICES

Qualified requestors may obtain from DDC.
DDC release to OTS authorize

H SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Directorate of Computers
L. G. Hanscom Field

 Redfnrd, Massachusetts
13 ABSTRACT

This report describes the program design and accompanying tools required to
fabricate an initial operational program which is subject to change through use and
as a result of changes in the environment of the system. Major design decisions are
shown to have little relation to the programming language that is chosen for the
statement of the logical data transformations to be implemented by the final program.
The actual coding required for performing the logical transformations turns out to be
a relatively small part of the overall design job. The choice of the programming
language to be used is just an initial decision in the process of selecting adequate
tools for assisting the production and modification of real-time programs.

DD ,^,1473
Security Classification

Security Classn' »tion
u

KEY WORDS
LINK A LINK B

. ROLE

LINK C

Computers and Data Systems
Data Processing Systems
Programming (Computers)

INSTRUCTIONS

l. ORIGINATING ACTIVITY: Enter the name and address
ot tl••• ntractor, subcontractor, grantee, Department of De-
fense- activity or other organization ('corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report- Indicate whether
"Restricted Data" ia included. Marking la to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authors) aa shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal ., >thor is an absolute minimum requirement.

6. REPORT DATI^ Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7 a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC "

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing lor) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C). or (V)

There is no limitation en the length of the abstract How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used us
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be use^ as key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights is optional

Security Classification

